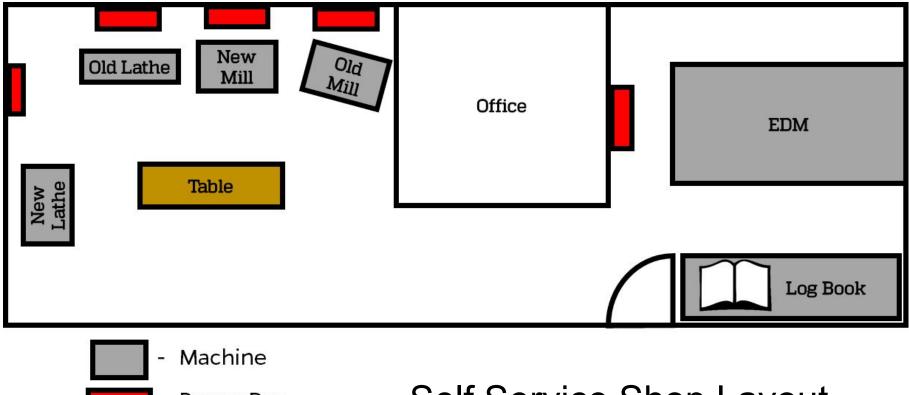
WSE18

Enhancing the Self Service Shop experience

Geordan Gutow ggutow1@jhu.edu 920-376-1608

David Samson dsamson4@jhu.edu 267-221-3054

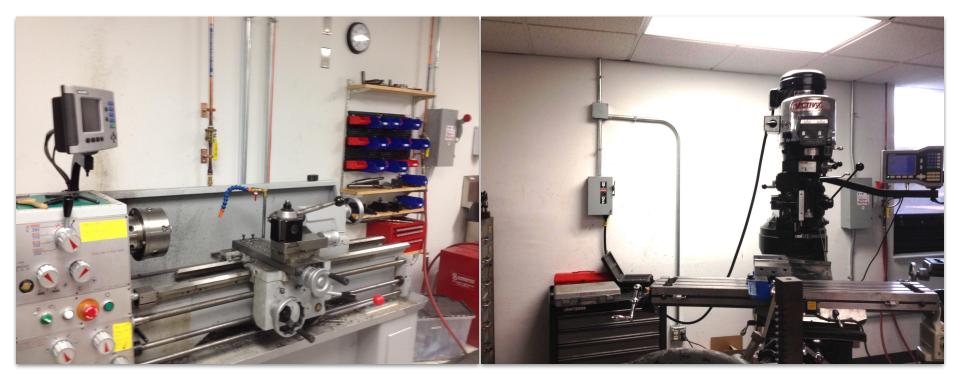
Stephane Teste steste1@jhu.edu 248-376-7922



WSE Self-Service Machine Shop

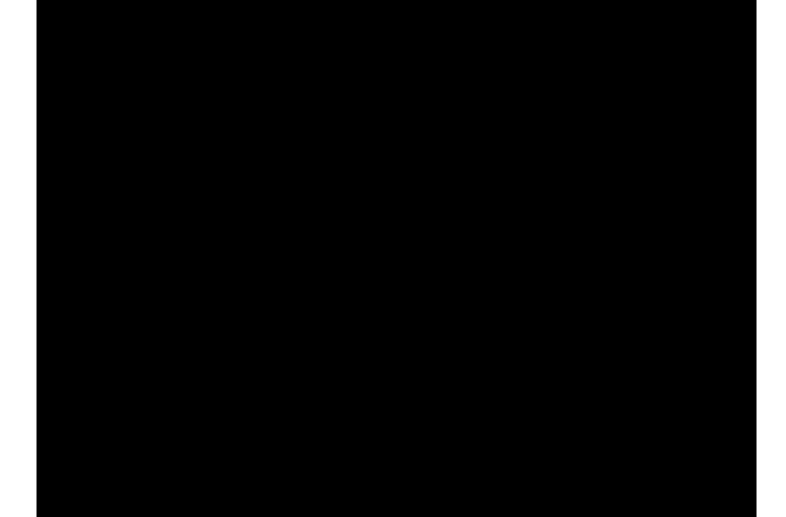
FIRST

METAL CHIPS ONLY NO OTHER TRASH


e de a

- Power Box

Self Service Shop Layout


Dangerous machines require training

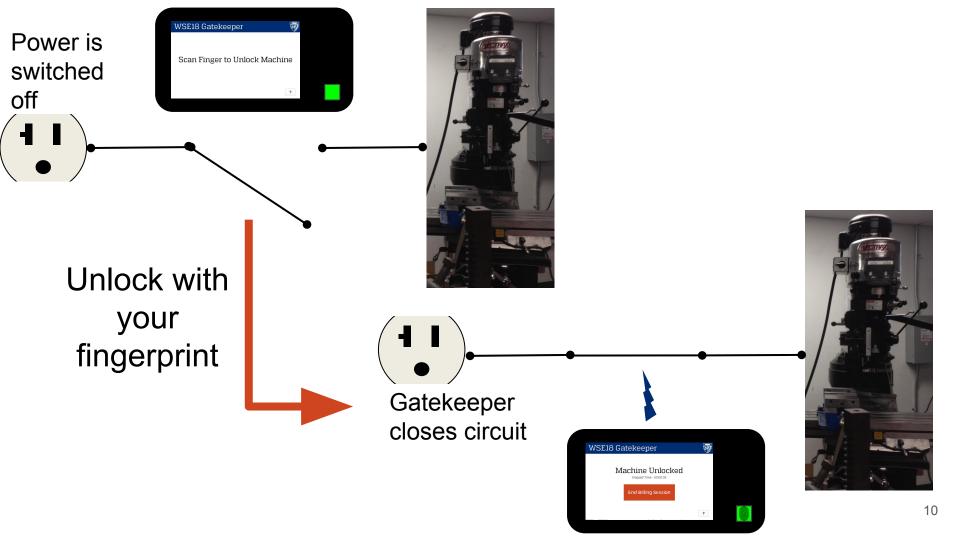
Self Service Shop Mill

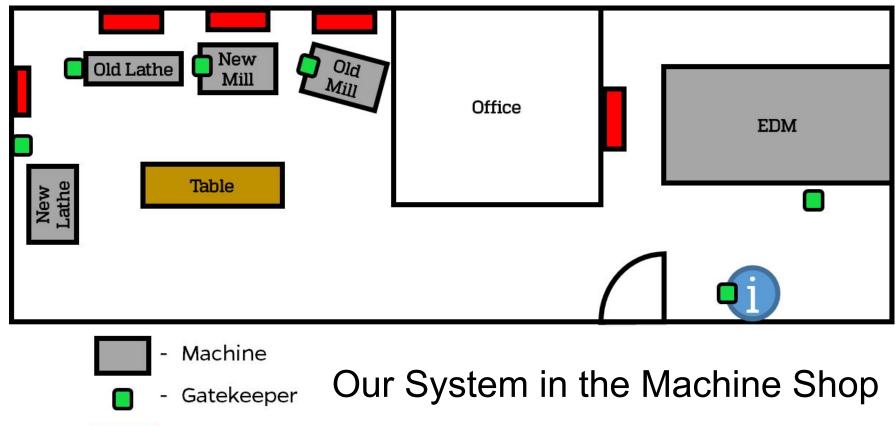
Usage Logs

				EDM US	AGE LO	G		
		\$40.00 per hour		Round time to 15	minute interva	als		Fill out this log completely and legibly
	Da	ite Name	E-Mail/JHED ID	Budget Code/Class	PI/Instructor	Start Time	End Time	Issues/Supplies Used
	11-5	147 Michael Duty	mduffy 10 umbred	IMBC	Zupan	1:15	2:15	1
	11/20	HIT WENXUAN LIANG)	Whiang 5	98012391	XINGDE LI	21:00	23:30	
	11/2	617 WENZUAN LIANG	WLIANGS	98012391	Xingde Li	13:15	14:15	
	ett	17 Av Gordon 2			Herbo	1.35		
	1112	s Gianna Valentino		90059857	Hemker		5:15	
	12/1	1 Junes Francila		90071725	Weiks	9.30	10.00	
	12/1	hatt Broudes	MBrunek 6	ALL 18	Scott	12:20	3:00	
The	14	2 Max Basesar	mbasesci	GL018	Scott		30-10:30	0
	2/2		ergoyal 11	STSci-A18	Scott	1:30	4-30	
1	12/3	Abhinav Goyal	agoya 11	STSCI-A28	Soft	1:30	3:30	
	12/4		jmill247	GLO18	Scott	11:45	12:45	
	12/1	H	Selvina 3	90071725	Weins			
+	12/4	WENXUAN LIANG	WLIANG5	98012391	XZNGDELL	02	01:15 AM	9:30-10
+	12/6	JESSE Milles	mill247	GL018	Scott	10:45	11.05	R 1.70 0
L	1 416	Matthe BANGS	Morandes	ALL 18	Scoft	1 1 1 0	211:12	141
L	17/6	Jesse Miller	jmill247	GLO18	Scott	11:45	12:45	- Cht
4	217	David Cartman	deactiona2	90052287	Hemper	10:00	12:00	
1	2/8	Roshan Plantletter	rplamth1	90068499	Gl-Awelly	12:45		
	,		1		,			
-								
-				and the second second	-			

Problem Statement

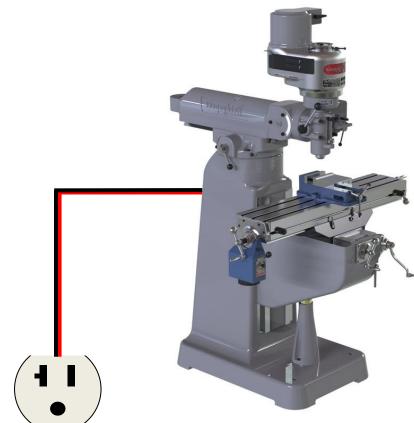
In an effort to **make the shop safer** and improve tracking of shop usage, team WSE18 is tasked with implementing a **tamper-evident system** that **prevents users from activating equipment they are not trained on**. The system is also expected to reduce the manual effort necessary for billing by automatically tracking equipment usage.

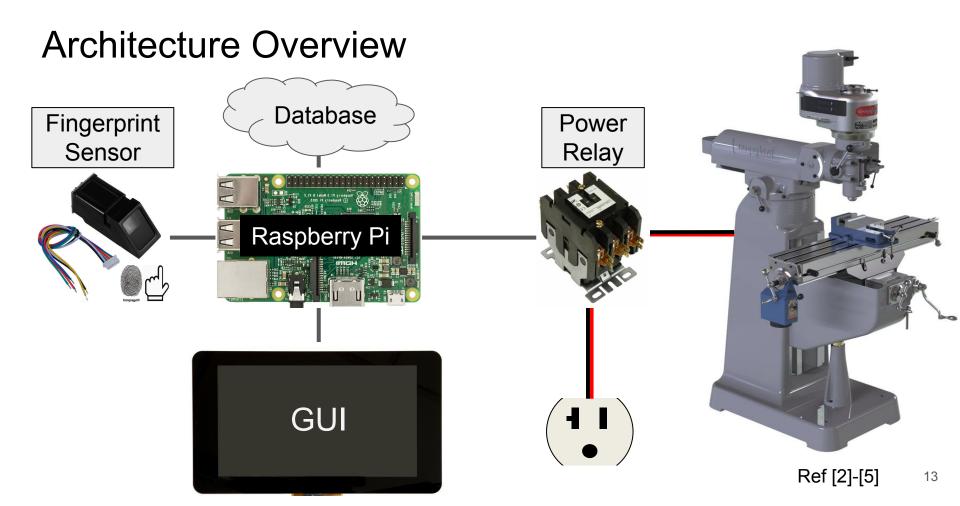

High Level Goals

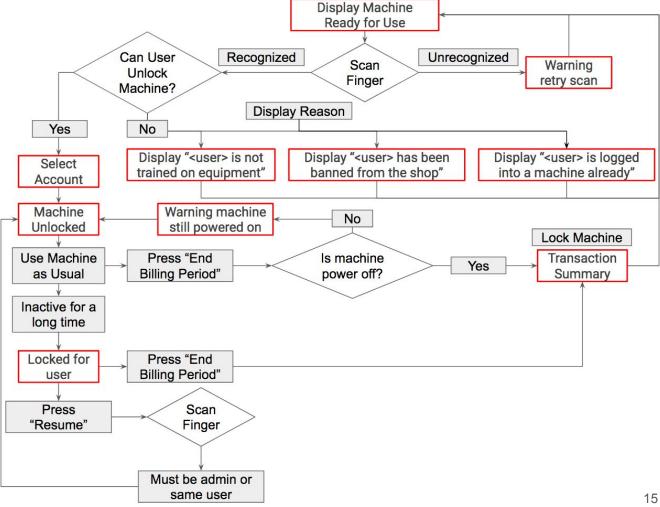

- 1. Seamless and intuitive
- 2. Long lasting and low maintenance
- 3. Scalable

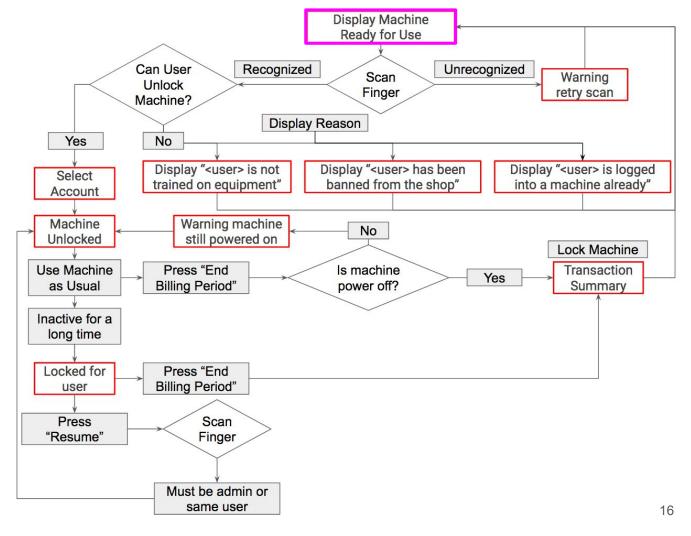
Product design done right.

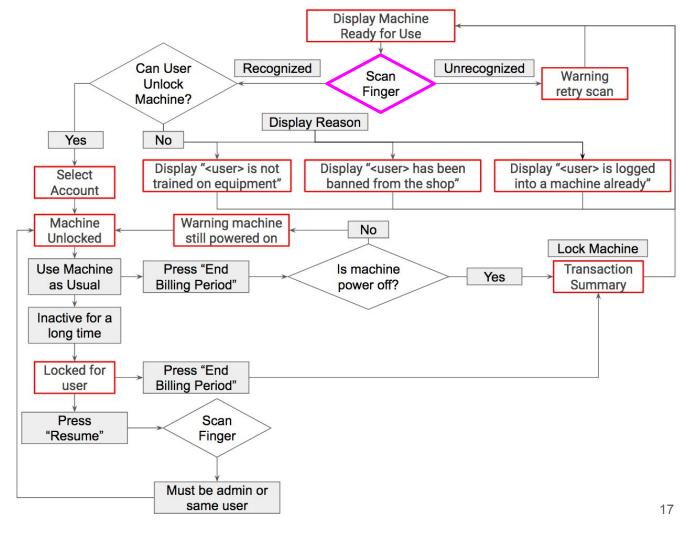
Introducing the Gatekeeper™

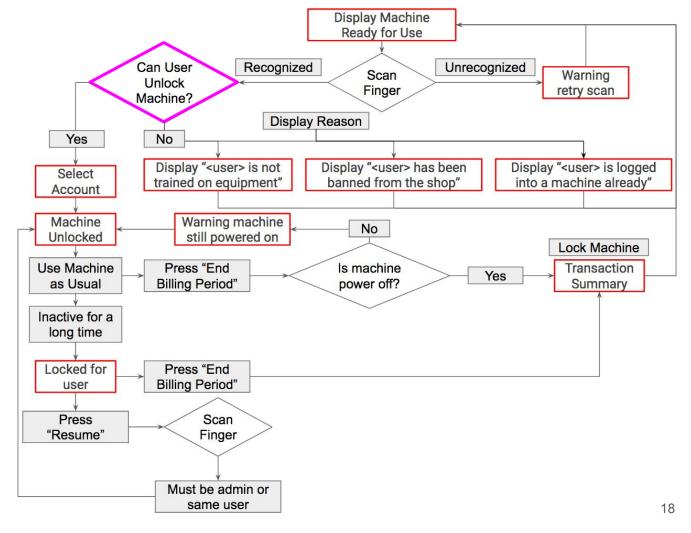


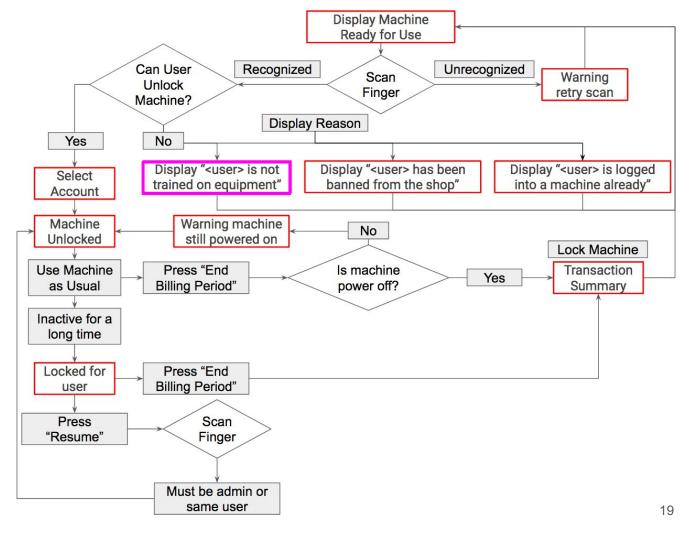

- Power Relay

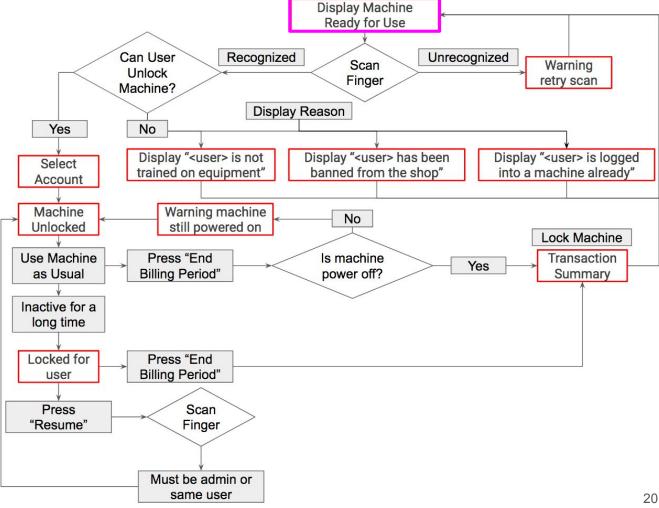

- Information Kiosk

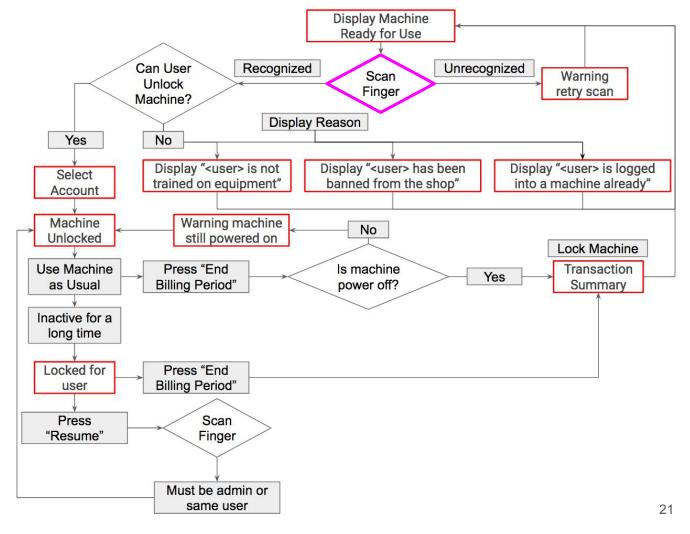

Architecture Overview

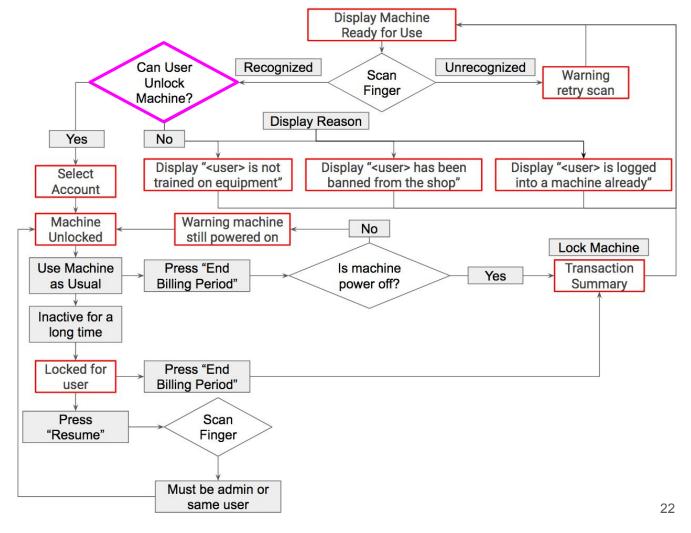


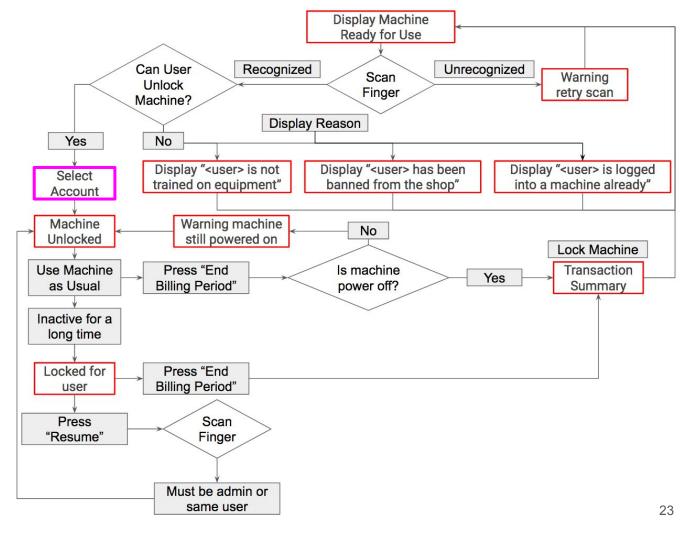


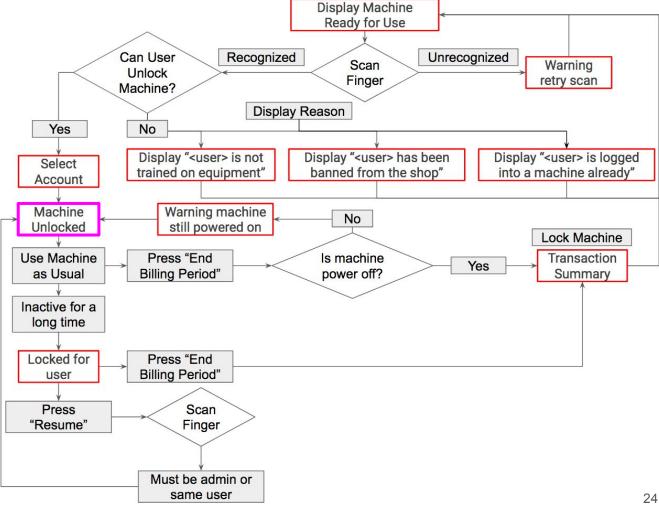

The Gatekeeper in Action

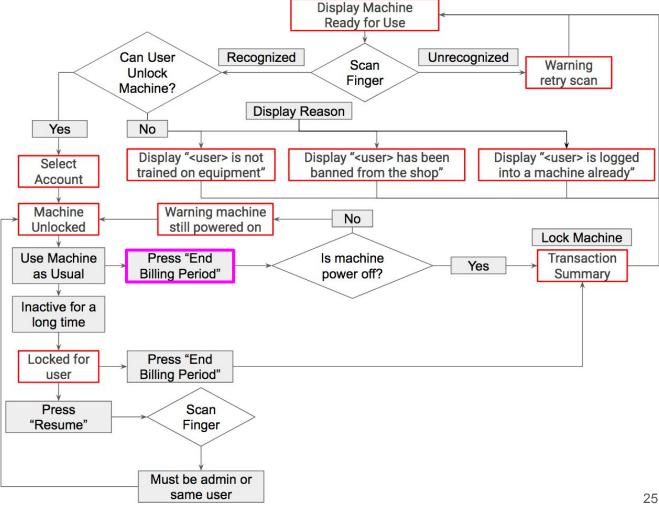


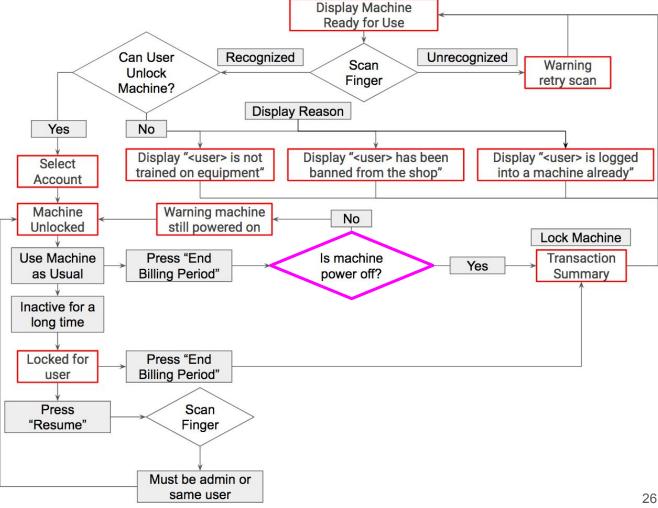


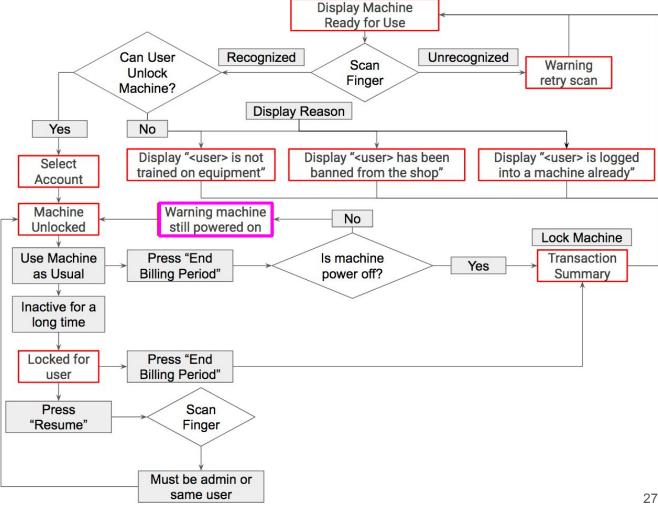


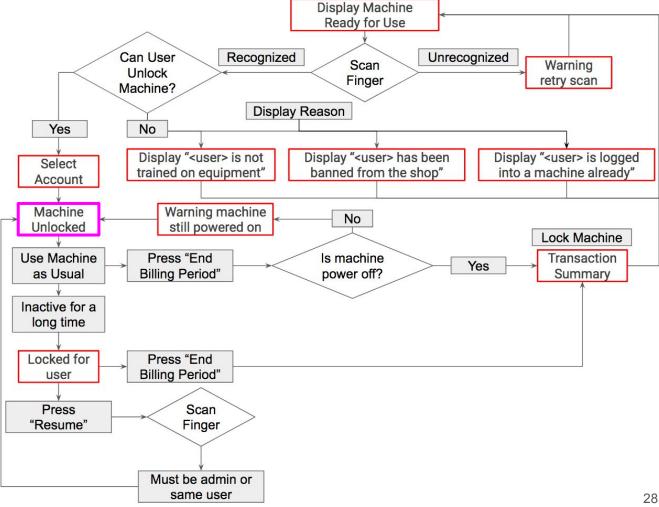


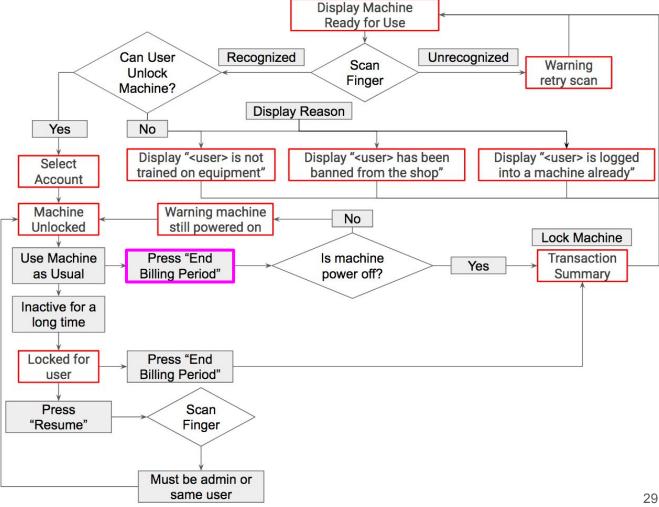


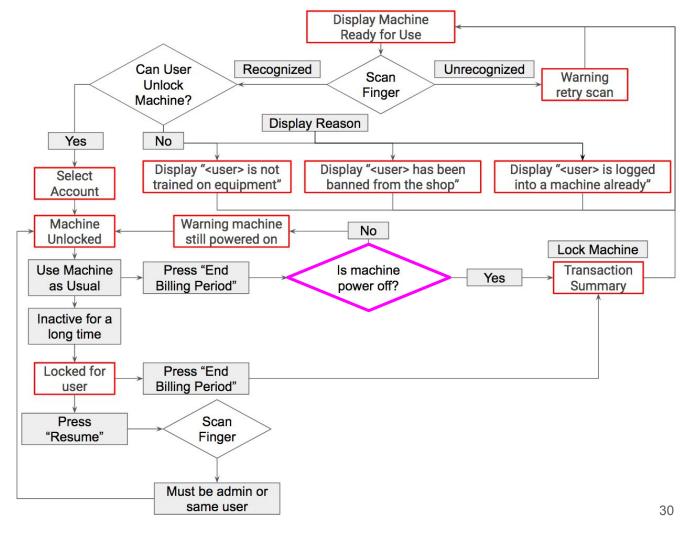


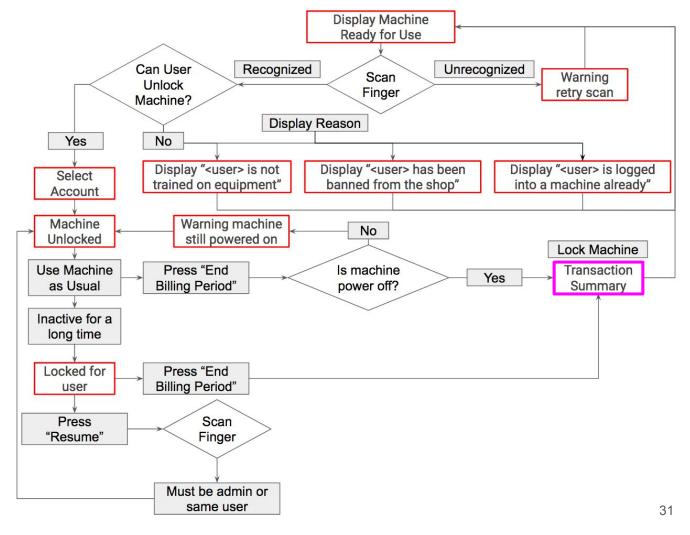


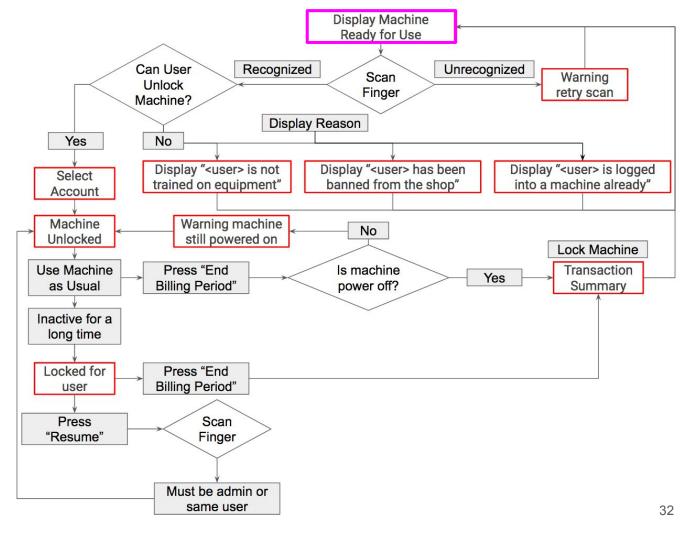


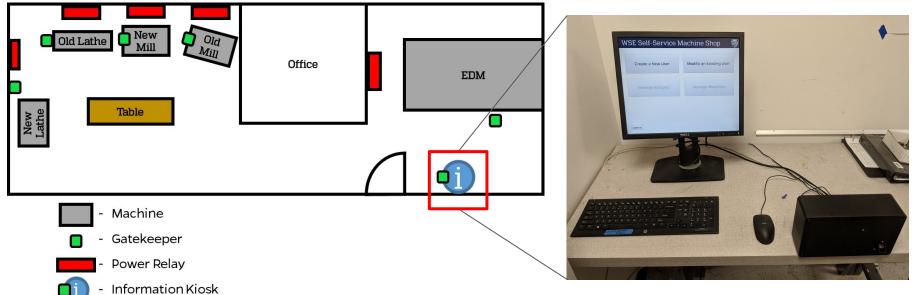


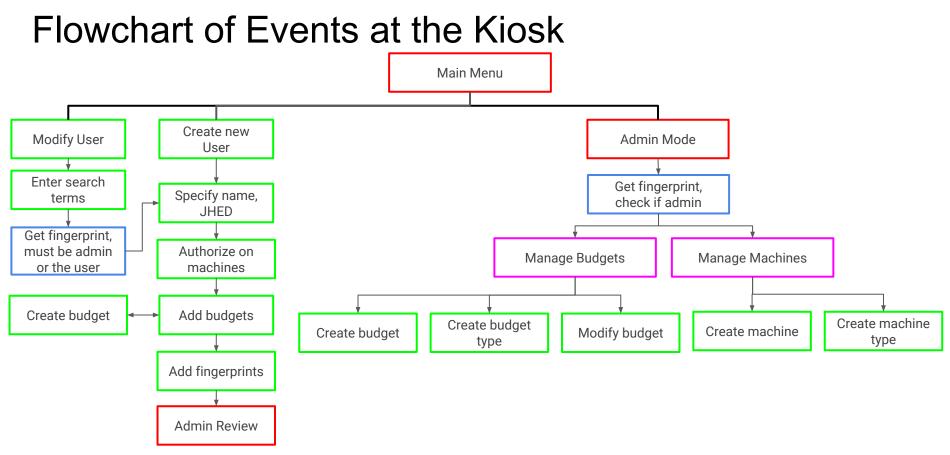






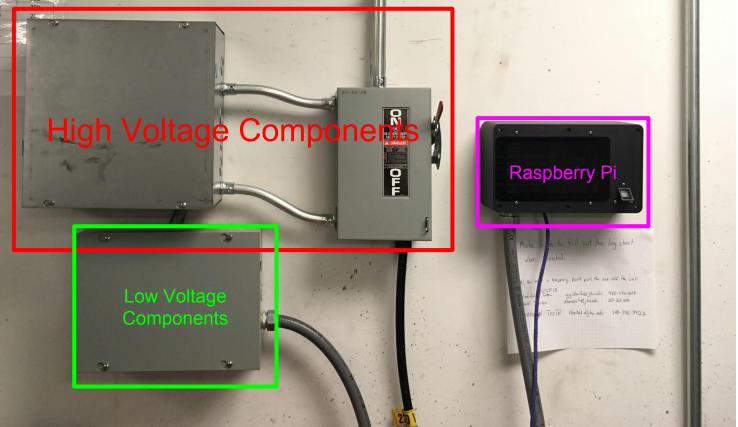




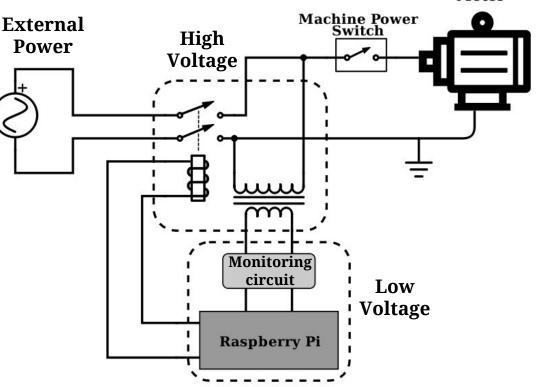


The Kiosk

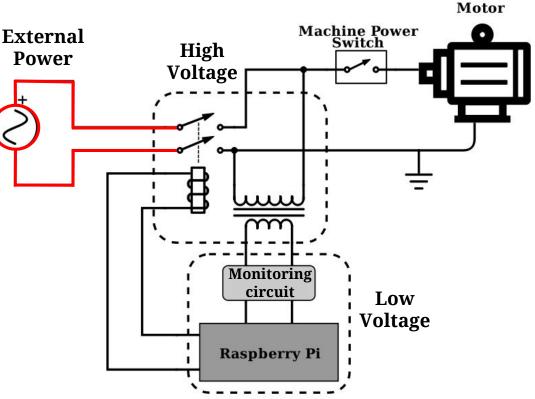
The Kiosk is the primary mechanism for adding new users, granting users access to new machines, and updating the list of budgets available to a user


Return to main menu at end of sequence ³⁴

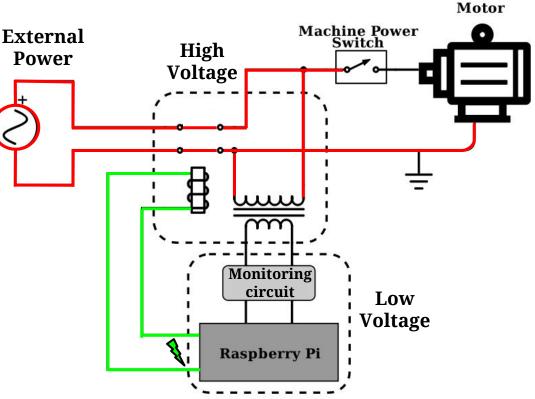
Electronics: What makes it click


Fully Installed Gatekeeper and Support Electronics

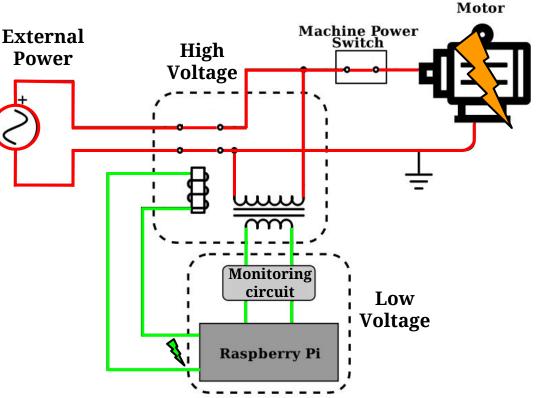
Fully Installed Gatekeeper and Support Electronics



- Pi activates contactor
- Power becomes available to machine
- User uses the machine as normal
- Pi monitors power with monitoring circuit



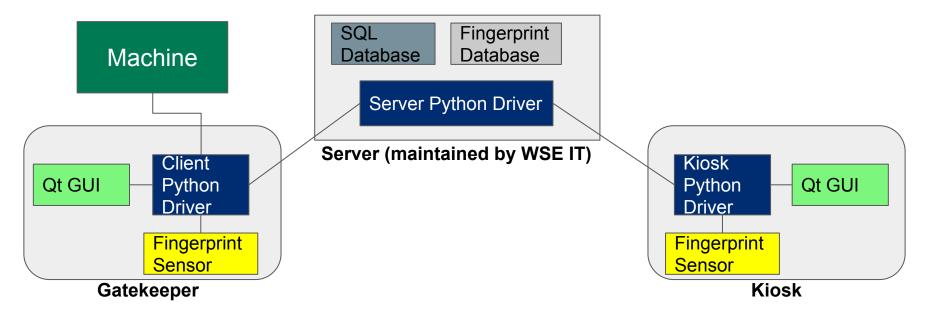
Motor

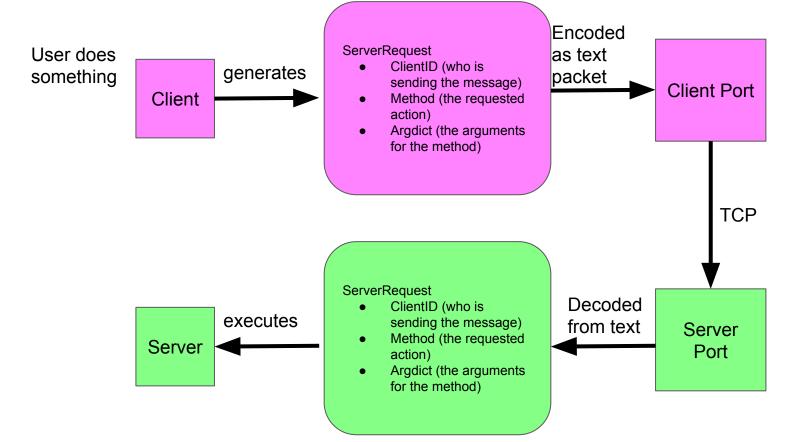

- Pi activates contactor
- Power becomes available to machine
- User uses the machine as normal
- Pi monitors power with monitoring circuit

- Pi activates contactor
- Power becomes available to machine
- User uses the machine as normal
- Pi monitors power with monitoring circuit

- Pi activates contactor
- Power becomes available to machine
- User uses the machine as normal
- Pi monitors power with monitoring circuit

National Electric Code (NEC)

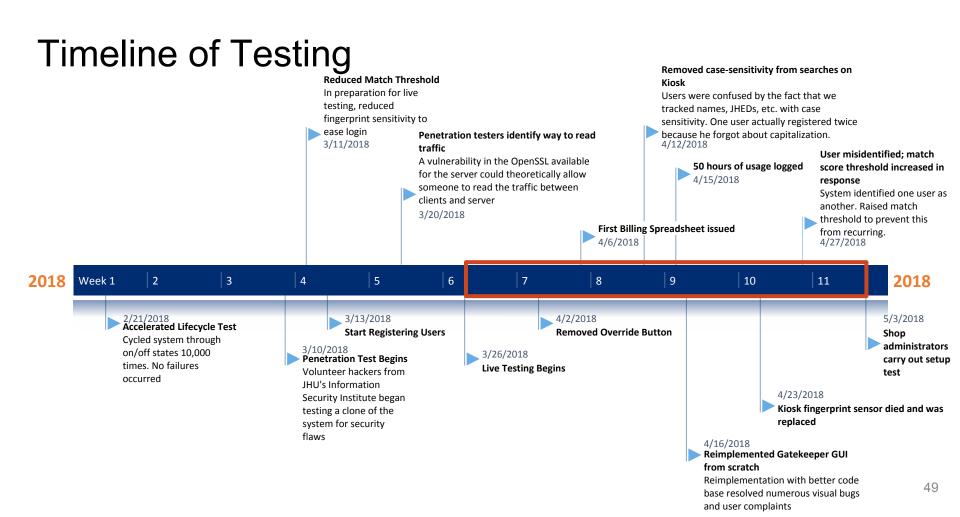

Requirement	Solution	Compliance
Certification required to handle more than 75V	Electrical technicians handle installation of high Voltage	Yes
Maintain Lockout-Tagout	Protocol unchanged by additions	Yes
Consistent insulation	Separate high voltage and low voltages boxes connected by conduit	Yes
Electrical system rated for 6x required current	Use appropriately rated components	Yes
Leads must be capped	Wire connectors	Yes



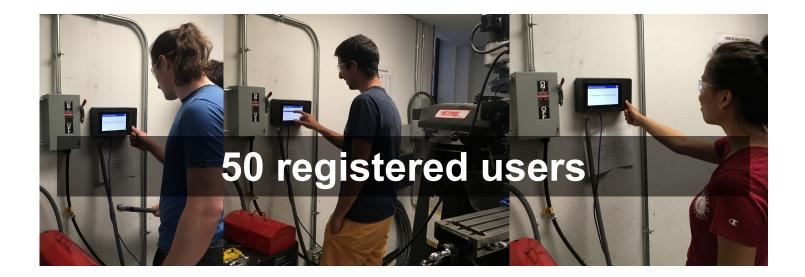
Backend: What makes it tick

Solution Architecture




Client to Server Communication Protocol

Evaluation


Pro	oject Requirements	High Level Test Plan	Status
1	prevent untrained users from activating machinery	In-house testing with unauthorized prints, live user testing	Achieved
2	be difficult for a determined user to bypass	Penetration testing by Information Security Institute, live user testing	Achieved
3	be tamper-evident	Penetration testing, Live user testing	Achieved
4	aid in billing	Live user testing	Achieved
5	be minimally intrusive to the user's ability to utilize the shop efficiently	Live user testing	Achieved
6	require minimal maintenance	Accelerated life-cycle testing of hardware	Achieved
7	be expandable to additional machines as the shop grows	Stakeholders setup a machine using only documentation	Achieved
8	not violate relevant electrical and safety codes	Expert evaluation from electricians	Achieved
9	not disconnect power to a machine while in use	In house testing and live user testing	Achieved
10	not cost more than \$10,000 to install in student shop	Cost tracking	Achieved 47

Protecting our users' data

• We partnered with the JHU Information Security Institute and the JHU Cybersecurity Club to test our system for security flaws

By the Numbers

- 4 teams of volunteer hackers
- **2 months** of penetration testing
- 1 way to read traffic
- 0 ways to alter data
- **0 ways** to steal sensitive information.

56

Ensuring system can last

• System has to continue to work, even as the shop changes

Two needs:

- 1. Maintainable by shop admins
- 2. Extendable by shop admins

Demonstrating Maintainability

- Low maintenance needs are the first step to maintainability
 - Demonstrated hardware reliability by cycling switching system through on/off states 10,000 times. No failures occurred.
 - Software designed to run unsupervised-records events to human readable log files
 - Carried out over 5 weeks of testing and debugging
- To ensure that the shop administrators can fix issues that do arise, we provided them with comprehensive documentation, including a troubleshooting guide

- Then you will be asked if you want the serial port hardware enabled. Highlight yes and press enter.
- You should then be informed that the serial login shell is disabled and the serial interface is enabled. Hit enter.
- 6. Use the arrow keys to highlight finish and hit enter.

Now we want to confirm that the pins used to communicate with the fingerprint sensor are set to the correct mode. Run:

\$ gpio readall

Check that the physical pin number 8 and 10 are in fact in mode ALT5:

BCM	wPi	Name	Mode	I V	Phys	sical	V	Mode	Name	WPi	BCN
		3.3v	1	1	1 1	1 2	1	1	5v	1	
2	8	SDA.1	IN	j 1	3	4	i i	i	5v	i	i i
3	9	SCL.1	IN	11	5	6	i	i	0v	i	
4	7	GPI0. 7	IN	11	7	8	1	ALT5	TxD	15	14
		Øv	i	i	9	10	11	ALT5	RxD	16	15
17	0	GPIO. Ø	IN	0	11	12	0	IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	0	13	14	1	1	Øv		
22	3	GPIO. 3	IN	0	15	1 16	0	IN	GPIO. 4	4	23
		3.3v	i	i	17	1 18	0	IN	GPIO. 5	5	24
10	12	MOSI	IN	0	19	20			Øv		
9	13	MISO	IN	0	21	1 22	0	IN	GPIO. 6	6	25
11	14	SCLK	IN	0	23	24	1	IN	CEØ	10	8
		Øv	i	i	25	26	11	IN	CE1	11	7
0	30	SDA.0	IN	i 1	27	28	1 1	IN	SCL.0	i 31	1 1
5	21	GPI0.21	IN	11	29	1 30	1	1	0v		1
6	22	GPI0.22	IN	11	31	32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34	i	1	Øv		
19	24	GPI0.24	IN	0	35	36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38	0	IN	GPI0.28	28	20
		Øv	i i	i	39	40	0	IN	GPI0.29	29	21
BCM	wPi	Name	Mode			sical		Mode	Name	WPi	BCM

If either is NOT in mode ALT5, run the following commands:

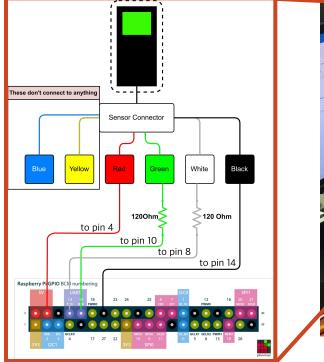
\$ gpio mode 15 ALT5

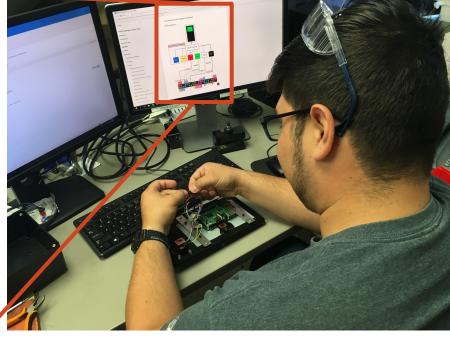
\$ gpio mode 16 ALT5

This should change the mode of wPi pin numbers 15 and 16 (i.e. physical pins 8 and 10, the ones we care about) to mode ALT5. Check that it worked by running:

\$ gpio readall

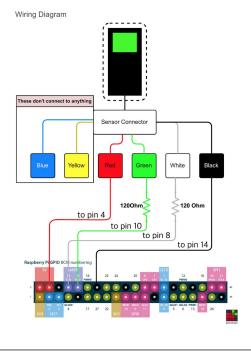
And confirm that pins 8 and 10 are now in ALT5 mode. If they are not, redo the raspi-config steps and try changing modes again.


Once the pins are successfully switched, reboot the Pi. Open a terminal window again and run: \$ gpio readall


Confirm that the pins are still in the correct mode. If they are not, try raspi-config again.

Sample troubleshooting steps

Demonstrating System Extendability


• Shop admin setup test proves ability to expand the system in the future

Documentation

Connecting the Fingerprint Sensor

- Then you will be asked if you want the serial port hardware enabled. Highlight yes and press enter.
- You should then be informed that the serial login shell is disabled and the serial interface is enabled. Hit enter.
- 6. Use the arrow keys to highlight finish and hit enter.

Now we want to confirm that the pins used to communicate with the fingerprint sensor are set to the correct mode. Run:

\$ apio readall

Check that the physical pin number 8 and 10 are in fact in mode ALT5:

BCM	wPi	Name	Mode	V	Phys	ical			Name	wPi	BCM
		3.3v	1	1	1 1	2		1	5v		
2	8	SDA.1	IN	j 1	3	4	i i	i	5v	i	i
3	9	SCL.1	IN	1 1	5	6	i i	1	Øv		i
4	7	GPIO. 7	IN	1	7	18	1	ALT5	TxD	15	14
		0v	1	i	9	10	1	ALT5	RxD	16	15
17	0	GPIO. 0	IN	0	11	12	0	IN	GPIO. 1	1	18
27	2	GPIO. 2	IN	0	13	14	i i	i	Øv		i
22	3	GPIO. 3	IN	0	15	16	0	IN	GPIO. 4	4	23
		3.3v		i	17	18	0	IN	GPIO. 5	5	24
10	12	MOSI	IN	0	19	20	i 🗇	i	Øv		1
9	13	MISO	IN	0	21	22	0	IN	GPIO. 6	6	25
11	14	SCLK	IN	0	23	24	1	IN	CEØ	10	8
		0v	1	1	25	26	1 1	IN	CE1	11	7
0	30	SDA.0	IN	11	27	28	1	IN	SCL.0	31	1 1
5	21	GPI0.21	IN	11	29	30	i	1	Øv		1
6	22	GPI0.22	IN	1 1	31	32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34	1		Øv		
19	24	GPI0.24	IN	0	35	36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38	0	IN	GPI0.28	28	20
		0v		1	39	40	0	IN	GPI0.29	29	21
BCM	wPi	Name	Mode			ical	v	Mode	Name	wPi	BCM

If either is NOT in mode ALT5, run the following commands:

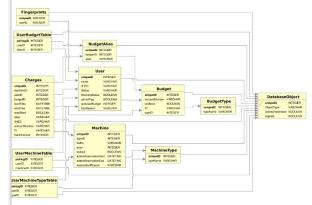
\$ gpio mode 15 ALT5

\$ apio mode 16 ALT5

This should change the mode of wPi pin numbers 15 and 16 (i.e. physical pins 8 and 10, the ones we care about) to mode ALT5. Check that it worked by running:

\$ gpio readall

And confirm that pins 8 and 10 are now in ALT5 mode. If they are not, redo the raspi-config steps and try changing modes again.


Once the pins are successfully switched, reboot the Pi. Open a terminal window again and run: \$ gpio readall

Confirm that the pins are still in the correct mode. If they are not, try raspi-config again.

SQL Database

SQL Structure Overview

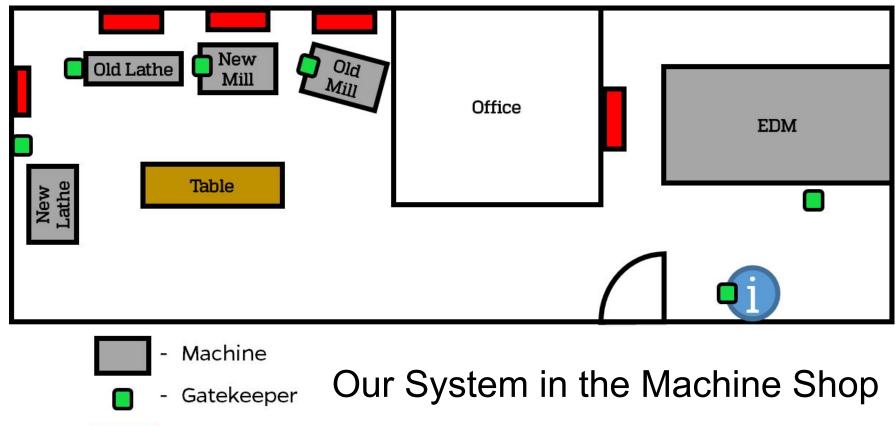
The SQL Database tracks all information for the system other than fingerprint features. The table structure is shown by the following visualization:

The most important feature to recognize is that every entry in every table is linked to an entry in the central DatabaseObject table, ensuring that every entry in the database has a *different* uniqueID, an ObjectType (which is actually not used), an accessRestricted value (also not used), and an expired value (which is used to archive items that no longer exist). The uniqueID is the means by which the system internally identifies database entries.

The various tables can be broken down into four categories:

1. Users and User-related items:

Assembly Guide


20

Troubleshooting

2

System Documentation

Conclusion

- Power Relay

- Information Kiosk

Budget: \$10,000

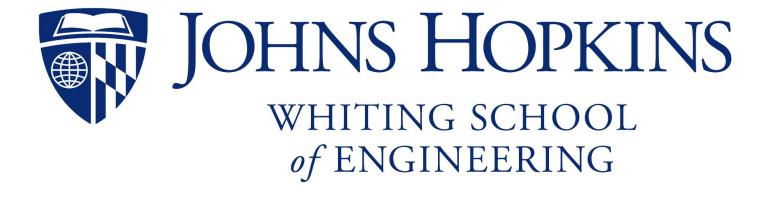
Expenditure to date: \$5043.90

Projected Additional Costs: <\$1000

Cost Savings: 40% of allocated funds

Acknowledgements

Thank you to:


- Rich Middlestadt
- Rich Mejia
 Sponsors
- Cynthia Larichiuta
- Colleen Cusimano
- Shawn Suter
- Dr. Nathan Scott

-Senior Design Instructors

- Soraya Bailey
- JHU Shops Electricians
- Joseph Carrigan

_JHU Information Security Institute

- The penetration testers
- Kimberly Koon
- Sebastian Yllanes

References

[1] "Applied Codeology: Navigating the NEC." Delmar Cengage Learning. 10 Dec 2017.

[2] "Contactor Stock Photo." Crescent Electric Supply Company.

[3] Gould Studios. "Bridgeport Milling Machine." Turbosquid. 8 Dec 2017.

[4] "Kookye Optical Fingerprint Reader." Amazon. 8 Dec 2017.

[5] "Raspberry Pi Touchscreen." Pihut. 8 Dec 2017.

[6] Steve Jobs. "MacWorld iPhone Introduction." Apple. 9 Jan 2007.

Original Problem Statement

The WSE18 project aims to install tamper-resistant biometric authentication and iLab in the self-service machine shop.

The main objective is to, first and foremost, ensure the safety of students using the machine shop, then to streamline the billing process.

What is iLab?

iLab is a commercial software product sold by Agilent. It provides tracking of user training on equipment and has the capacity to enable/disable machines via a small set of commercially available controlled outlet devices, like the one to the right.

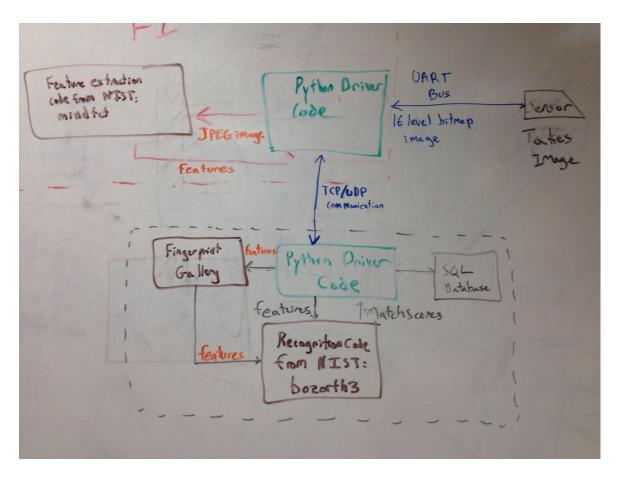
iLab was eventually removed from the solution due to lacking functionality necessary to implement a biometric authentication system. A revised problem statement, presented on the next page, was used to guide our work from that point onwards.

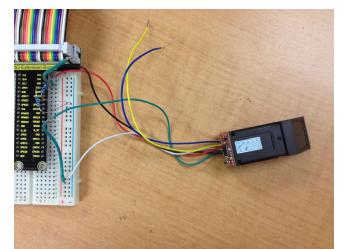
Brainstorming: Authentication Schemes

	1	1		
	Something you have (e.g. JCard)	Something you know (e.g. password)	Something you are (passive) (e.g. gait, or facial scan)	Something you are (active) (e.g. fingerprint)
Pros	 "100%" reliable Everyone already has a J-Card Already need card out to get into shop->not disruptive 	 Cheap "100% reliable" Might be less likely to share 	 User doesn't have to do anything Can't give away Always have 	 Can't give away Always have
Cons	 Can give away to untrained user Can lose Expensive if not JCard Reader may be expensive 	 Can give away Easy to forget Annoying to enter 	 Accuracy Unintentionally unlocking machine Expensive cameras/sensors/software Privacy concerns Speed of identifying a user 	 Accuracy Privacy Annoying to have to provide

Gatekeeper™ GUI Hardware Implementation

Raspberry Pi 7" touchscreen display

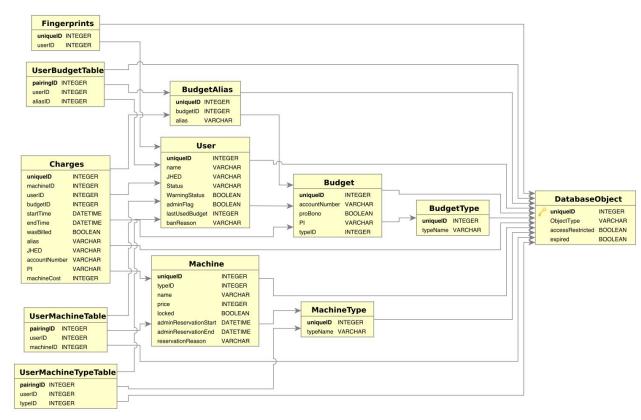

- Full color
- Capacitive Touch Screen
- 800x480 (480p) resolution
- Designed to interface the Pi
 - Screen standoffs connect to pi mounting holes
 - Screen connects directly to Display Serial Interface
- Easy to mount to an external enclosure


Software Architecture

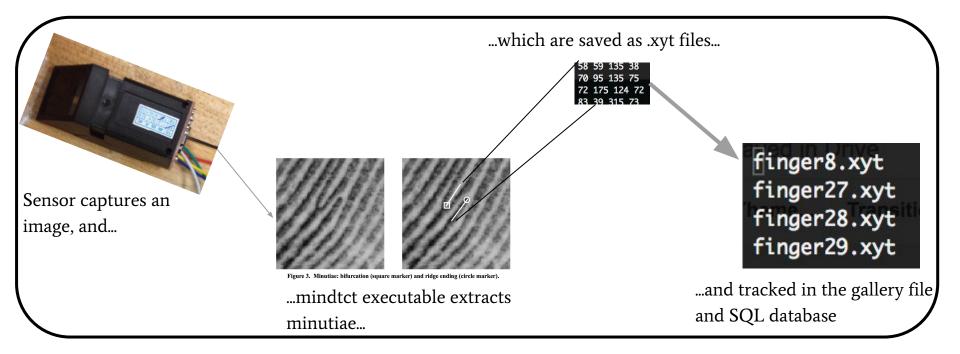
- sensor is used only to capture images
- Storage and matching are handled by NIST's National Biometric Information Software
- Images never leave the PI and are not saved, improving privacy

Software Architecture

- 1. The Raspberry Pi uses a commercial fingerprint sensor to capture prints.
- 2. These prints are feature extracted by mindtct and sent to the SQL database
- 3. SQL database server maintains authentication, training, and budget records
- 4. If permitted, the user is asked for a budget
- 5. Then the Raspberry Pi unlocks the machine



Current Sensor: Kookye Optical Fingerprint Sensor Selected for:


- 1. simple, easy-to-use hardware/software interface
- 2. Low-cost combined with good resolution
- 3. Can upload raw image files, meaning we are not forced to use onboard algorithm

Data Management Solution: SQL Database

The data includes information (such as training) that needs to be shared with multiple types of "objects." A relational database can capture this efficiently

Recording a fingerprint

Recognizing a User

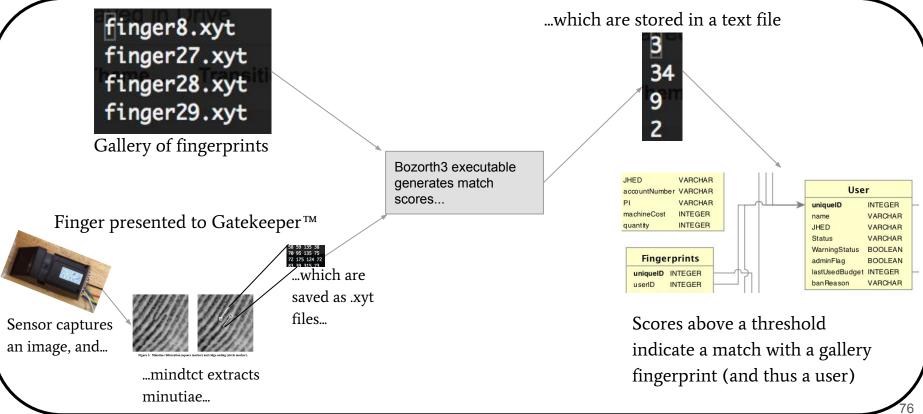
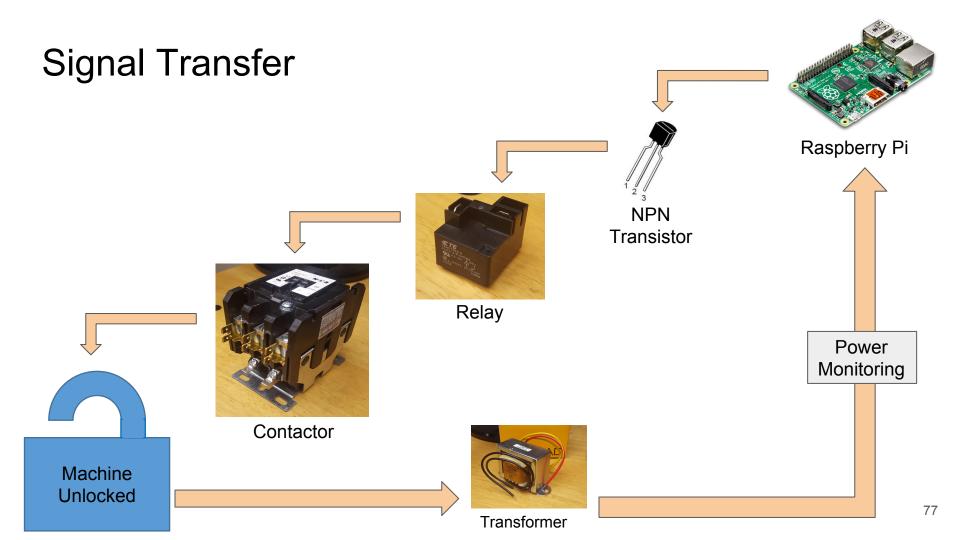



Image: User's Guide to NIST Biometric Software

Expenses (Next 5 Pages)

Budget: \$10,000

Total Expenditures: \$5,043.90

	Budget	10,000						
	Remaining	4,956						
Orders								
Item	Vendor	Order Date	Unit Cos	t Quantity	S	nipping	Total Cost	Received
1/4" BSPP Female to 1/4" NPT male	McMaster-Carr	9/11/2017	\$ 7.	59 2	\$	-	\$15.18	yes
1/4" BSPP Male to Male	McMaster-Carr	9/11/2017	\$ 5.	51 2	\$	-	\$11.02	yes
KOOKYE Optical Fingerprint Reader Sensor Module	Amazon	9/11/2017	\$ 32.9	9 1	\$	-	\$32.99	yes
General Purpose Relays <t9gs1l14-12> 480 VAC SV</t9gs1l14-12>	Mouser	9/11/2017	\$ 1.9	98 5	\$	15.56	\$25.46	yes
General Purpose Relays <t9as1d22-5> 277 VAC SV</t9as1d22-5>	Mouser	9/19/2017	\$ 3.8	34 27	\$	15.56	\$119.24	yes
KOOKYE Optical Fingerprint Reader Sensor Module	Amazon	9/19/2017	\$ 32.9	99 1	\$	-	\$32.99	yes
3.5" TFT 320x480 Touchscreen	Amazon	9/19/2017	\$ 35.9	95 2	\$	7.76	\$79.66	yes
Raspberry Pi 3 Official Desktop Starter Kit	Amazon	9/19/2017	\$ 55.2	25 2	\$	-	\$110.50	yes
HDMI Cables	Amazon	9/25/2017	\$ 6.9	99 2	\$	-	\$13.98	yes
Sustenance	Ledos	9/28/2017	\$ 24.0	00 1	\$	-	\$24.00	yes
GPIO Breakout Kit for Raspberry Pi	Amazon	10/2/2017	\$ 7.9	99 2	\$	3.99	\$19.97	yes
Sustenance	Pizza Boli's	10/4/2017	\$ 8.	50 2	\$	-	\$17.00	yes
Raspberry Pi 7" Touchscreen Display	Amazon	10/6/2017	\$ 69.9	99 1	\$	-	\$69.99	yes
Sustenance	Pizza Boli's	10/19/2017	\$ 8.	50 2	\$		\$17.00	yes
Contactor	Amazon	10/16/2017	\$ 99.	80 1	\$	7.99	\$107.79	yes
Team Meal at Ajumma	Ajumma	11/3/2017	\$ 37.8	38 1	\$	-	\$37.88	yes
ADC - RETURNED	Amazon	11/7/2017	\$ 5.0	01 1	\$	5.01	\$10.02	yes

Budget: \$10,000

Total Expenditures: \$5,043.90

	Budget	10,000							
	Remaining	4,956							
Orders									
Item	Vendor	Order Date	U	nit Cost	Quantity	Shi	oping	Total Cost	Received
Contactor	Grainger	11/6/2017	\$	137.10	2			\$274.20	yes
Pizza	Pizza Boli's	11/15/2017	\$	8.50	2			\$17.00	yes
Pizza	Pizza Boli's	11/1/2017	\$	8.50	2			\$17.00	yes
Pizza	Pizza Boli's	10/11/2017	\$	8.50	2			\$17.00	yes
Team Meal at Ajumma	Ajumma	10/20/2017	\$	37.88	1			\$37.88	yes
Raspberry Pi 7" Touchscreen Display	Amazon	11/27/2017	\$	69.99	1	\$	-	\$69.99	yes
GPIO Breakout Kit for Raspberry Pi	Amazon	11/27/2017	\$	7.99	2			\$15.98	yes
Raspberry Pi 3 Official Desktop Starter Kit	Amazon	11/27/2017	\$	59.99	2	\$	1.7	\$119.98	yes
Kookye Fingerprint reader	Amazon	11/27/2017	\$	32.99	2	\$	7.98	\$73.96	yes
Pyle Pro Adjustable Tripod Laptop Projector Stand, 28" To 41"	Amazon	11/27/2017	\$	30.59	1	\$	-	\$30.59	yes
Electronics Box	Amazon	11/27/2017	\$	28.77	1	\$	4.99	\$33.76	yes
Raspberry Pi 3 Desktop Starter Kit	Amazon	1/31/2018	\$	59.95	1			\$59.95	yes
GPIO Breakout Kit for Raspberry Pi	Amazon	1/31/2018	\$	7.99	1			\$7.99	yes
HDMI Input to DVI Output Adapter Cable	Amazon	1/31/2018	\$	6.99	1			\$6.99	yes
KOOKYE Optical Fingerprint Reader	Amazon	1/31/2018	\$	32.99	1			\$32.99	yes
15ft Micro USB Cable	Amazon	2/7/2018	\$	7.99	1			\$7.99	
20ft Micro USB Cable	Amazon	2/7/2018	\$	7.99	1			\$7.99	

Budget: \$10,000

Total Expenditures: \$5,043.90

	Budget	10,000						
	Remaining	4,956						
Orders								
Item	Vendor	Order Date	U	nit Cost	Quantity	Shipping	Total Cost	Received
100 Pc Screw Terminal Blocks	Amazon	2/7/2018	\$	10.79	1		\$10.79	
Electrical Shop Services	JHU	2/1/18	\$	646.17	1		\$646.17	
Pizza	Pizza Boli's	1/31/2018	\$	8.50	2		\$17.00	yes
Pizza	Pizza Boli's	2/6/2018	\$	8.50	2		\$17.00	yes
Pizza	Pizza Boli's	2/13/2018	\$	8.50	2		\$17.00	yes
USB to Ethernet Adapter	Amazon	3/2/2018	\$	7.99	2		\$15.98	yes
Raspberry Pi Canakit starter		2/26/2018	\$	49.99	1		\$49.99	yes
Arducam Multi Camera Adapter Module	Amazon	2/26/2018	\$	49.99	1		\$49.99	yes
Arducam 5 Megapixels Camera	Amazon	2/26/2018	\$	13.49	2		\$26.98	yes
Small Right Angle Prism	Amazon	2/26/2018	\$	11.01	1		\$11.01	yes
San Disk Micro SD 8GB	Amazon	3/2/2018	\$	6.99	1		\$6.99	yes
Raspberry Pi Starter Kit	Amazon	3/2/2018	\$	59.97	1		\$59.97	yes
Pack of 10nF Capacitors (1000V)	Amazon	02/26/18	\$	8.17	1		\$8.17	yes
PowerLine Communicaitons Adaptor Kit	Amazon	02/27/18	\$	44.99	1		\$44.99	yes
3D Printing for sensor prototype	WSE	3/6/2018	\$	184.97	1		\$184.97	yes
Current Transformer	Grainger	3/7/2018	\$	47.37	1		\$47.37	yes
Plastic Utility Box	Amazon	3/15/2018	\$	23.10	1		\$23.10	yes

Budget: \$10,000

Total Expenditures: \$5,043.90

	Budget	10,000							
	Remaining	4,956							
Orders									
Item	Vendor	Order Date	U	nit Cost	Quantity	Sł	nipping	Total Cost	Received
Solenoid Valve	Grainger	4/27/2018	\$	71.25	1			\$71.25	yes
Tamper Proof Screws	Tamperproof Sci	rew Co, Inc	\$	51.20	1	\$	21.86	\$73.06	yes
PCB Order	OshPark		\$	97.80	1	\$	35.00	\$132.80	yes
McMaster Fasteners Order	McMaster	4/26/2018	\$	11.76	1			\$11.76	yes
Gatekeeper Kit	Amazon	4/20/2018	\$	164.33	5			\$821.65	yes
Raspberry Pi 3 power supply 5V 3A	Amazon	4/20/2018	\$	10.99	1			\$10.99	yes
Plastic Utility Box	Amazon		\$	23.10	3			\$69.30	yes
Raspberry Pi 3 power supply 5V 3A	Amazon	5/1/2018	\$	9.99	6			\$59.94	yes
Digikey Order	Digikey	5/2/2018	\$	17.94	1			\$17.94	yes
Electrical Boxes	Amazon	5/2/2018	\$	37.99	4			\$151.96	yes
More Electrical Boxes	Amazon	5/2/2018	\$	23.57	1			\$23.57	yes
Pull Box	Amazon	5/2/2018	\$	20.91	3			\$62.73	yes
Additional Digikey Order	Digikey	4/30/2018	\$	63.54	1			\$63.54	yes
Current Transformer	Grainger	4/27/2018	\$	50.75	5	\$	10.98	\$264.73	yes
Contactor	Amazon	4/27/2018	\$	99.80	2			\$199.60	yes
USB Wall Charger 3 Pack	Amazon	4/27/2018	\$	8.99	2			\$17.98	yes
Original Security Screws Order	Tamperproof Sci	rew Co, Inc	\$	25.60	1	\$	21.86	\$47.46	yes

Budget: \$10,000

Total Expenditures: \$5,043.90

	Budget	10,000							
	Remaining	4,956							
Orders									
ltem	Vendor	Order Date	Un	nit Cost	Quantity	Shi	pping	Total Cost	Received
Waterjet Time	WSE		\$	70.00	0.25			\$17.50	yes
Laser cutter Time	WSE		\$	30.00	1.25			\$37.50	yes
M to F Micro USB Adapter	Amazon	3/26/2018	\$	5.58	1	\$	-	\$5.58	yes
Jumper Wires for Raspberry Pi	Amazon	3/26/2018	\$	6.98	1	\$	-	\$6.98	yes
Black ABS Utility Box	Amazon	4/27/2018	\$	23.10	2			\$46.20	yes
BSI Super Glue	Amazon	5/1/2018	\$	8.25	2			\$16.50	yes

Full expenses spreadsheet can be found at:

<https://docs.google.com/spreadsheets/d/12Nj-vAkb6Q3DfC7pEC3eFCeiTTDK5v QEFtAUXouBF-I/edit?usp=sharing>

Projected Deployment Cost

Each Gatekeeper uses components costing \$427.49+shipping. Bulk ordering can potentially reduce these costs further.

The work conducted by the electricians to install a system is a variable cost, depending on the state of the electrical system surrounding the machine to be controlled. However, labor is unlikely to cost more than \$600 per installation, as that was the cost of the first (and thus most expensive) installation the electricians did.

A detailed cost breakdown, with links for ordering more components, is available here: https://docs.google.com/spreadsheets/d/1RR1LcHQNt9hPBADR2CIPDq5knEZoumeF0wtRRccP1DI/edit?usp=sharing